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Viscous fingering in non-Newtonian fluids
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We study the viscous fingering or Saffman–Taylor instability in two different dilute or
semi-dilute polymer solutions. The different solutions exhibit only one non-Newtonian
property, in the sense that other non-Newtonian effects can be neglected. The vis-
cosity of solutions of stiff polymers has a strong shear rate dependence. Relative to
Newtonian fluids, narrower fingers are found for rigid polymers. For solutions of
flexible polymers, elastic effects such as normal stresses are dominant, whereas the
shear viscosity is almost constant. Wider fingers are found in this case. We charac-
terize the non-Newtonian flow properties of these polymer solutions completely,
allowing for separate and quantitative investigation of the influence of the two most
common non-Newtonian properties on the Saffman–Taylor instability. The effects of
the non-Newtonian flow properties on the instability can in all cases be understood
quantitatively by redefining the control parameter of the instability.

1. Introduction
Viscous fingering has received much attention as an archetype of pattern-forming

systems and as a limiting factor in the recovery of crude oil (Saffman & Taylor
1958; for reviews see Bensimon et al. 1986; Homsy 1987; Couder 1991). Viscous
fingers form when in a thin linear channel or Hele-Shaw cell, a fluid pushes a
more viscous fluid. The interface between the fluids develops an instability leading
to the formation of finger-like patterns. The viscous fingering instability has been
studied intensively over the past few decades, both theoretically and experimentally.
Compared to other pattern-formation problems, this is likely to be due to its relative
simplicity. Indeed, the mathematically interesting structure of the governing equations
is also at the root of much of the theoretical interest; the problem is typical of many
Laplacian free-boundary problems (Couder 1991). Although highly nonlinear, the
problem has been solved numerically; for some limiting cases, analytical results have
been obtained.

A whole different class of problems was uncovered somewhat later, when the
instability was studied for non-Newtonian fluids. For these, strikingly different
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fingering patterns are found (Daccord, Nittmann & Stanley 1986; Lemaire et al.
1991; McCloud & Maher 1995; Bonn, Kellay & Meunier 1998). Experiments in,
for instance, foams, clay pastes, slurries and polymer gels reveal branched fractal or
fracture-like patterns (van Damme et al. 1988; Zhao & Maher 1993; Park & Durian
1994). The physical origin of the very different structures is so far ill understood,
mainly also because the visco-elastic characteristics of most of these fluids were not
determined simultaneously. Recently, a number of experiments have been performed
in somewhat simpler systems: dilute or semidilute polymer solutions (Smith et al.
1992; Bonn et al. 1995; Bonn & Meunier 1997; Kawaguchi et al. 1998). In these
experiments, both a narrowing (Smith et al. 1992; Bonn & Meunier 1997), and a
widening (Bonn et al. 1995) of the fingers with respect to the Newtonian case was
reported upon addition of small amounts of polymers in the driven fluid.

The main mathematical challenge the ‘visco-elastic fingering’ instability poses is that
the pressure field may no longer be Laplacian, making even a numerical prediction of
the finger width difficult, but in some cases not impossible (Kondic, Palffy-Muhoray &
Shelley 1998; Ben Amar & Corvera Poiré 1999). Detailed theory on the visco-elastic
fingering instability has attempted to account for some of these features, mainly
focusing on shear-thinning behaviour (Wilson 1990; Sader, Chan & Hughes 1994;
Ben Amar 1995; Bonn et al. 1995; Kondic et al. 1996, 1998; Corvera Poiré & Ben
Amar 1998; Ben Amar & Corvera Poiré 1999; Fast et al. 2001). Some authors also
attempt to take other non-Newtonian effects, such as normal stresses into account
(Wilson 1990; Ro & Homsy 1995). Other authors have analysed a Maxwell fluid in
a tube and derived a dynamic generalization of Darcy’s law in the frequency domain
(del Rı́o, López de Haro & Whitaker 1998).

Most of the fluids studied in the experiments, on the other hand, exhibit a
number of different non-Newtonian properties. Notably, polymer solutions can
exhibit both shear thinning and normal stress effects, which have been shown to
lead to opposite effects (finger narrowing and finger widening) on the instability
(Bonn et al. 1995; Bonn & Meunier 1997). Additionally, the viscous fingering in-
stabilities in, for instance, pastes or gels are more difficult to understand since
these fluids have a yield stress, show shear thinning, and possibly have other elastic
effects also.

Here, we attempt to disentangle the influence that different non-Newtonian flow
properties have on the instability. To do so, we study fingering in two different
dilute or semi-dilute polymer solutions, that each exhibit only one non-Newtonian
property, in the sense that other non-Newtonian effects can be neglected. For solutions
of flexible polymers, elastic effects such as normal stresses and a large elongational
viscosity are dominant, whereas the shear viscosity is almost constant. Stiff polymers,
on the other hand, may show a strong dependence of the viscosity on the shear
rate, but almost negligible elastic effects (i.e. normal stresses). We characterize the
non-Newtonian flow properties of these polymer solutions completely, allowing for
separate and quantitative investigation of the influence of the two most common
non-Newtonian properties on the Saffman–Taylor instability: shear thinning and
normal stress effects. Probably the third most common non-Newtonian property is
a yield stress; we previously studied the effect of a yield stress on the instability
(Lindner, Coussot & Bonn 2000a). This paper is organized as follows. In § 2, we
will recall the basic equations for the Saffman–Taylor instability and § 3 deals with
the systems and experimental methods. In §§ 4 and 5, we will treat the effect of
shear-thinning and normal stresses on the instability, respectively; the results are
summarized in § 6.
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2. The Saffman--Taylor instability
For Newtonian fluids, the motion of a fluid between the two horizontally spaced

plates of the Hele-Shaw cell is described by the two-dimensional velocity field v
averaged through the thickness of the cell. It is given by Darcy’s law, which relates
the local pressure gradient to the fluid velocity v as:

v = − b2

12µ
∇p, (1)

where b is the plate spacing of the Hele-Shaw cell and µ is the shear viscosity. It
follows immediately that, if the fluid is incompressible, the pressure field satisfies
Laplace’s equation:

∆p = 0. (2)

If the fluid is displaced by another, less viscous, fluid, the interface between the two
fluids is unstable, and viscous fingers will form. In the experiments, we use air as the
driving fluid; we can neglect its viscosity. Therefore, Darcy’s law applies for the driven
fluid with viscosity µ. The pressure field is also calculated within the driven fluid with,
in addition, a pressure jump over the interface owing to the surface tension:

δp = σ/R, (3)

with σ the interfacial tension and R the radius of curvature of the interface, again
employing a two-dimensional approximation, as was justified in the limit of small
capillary number by Park & Homsy (1984), and Reinelt & Saffman (1985). The other
boundary conditions are the continuity condition, which implies that the normal
velocity at both sides of the interface is equal and a far-field value for the pres-
sure. Supplemented with these boundary conditions, equations (1)–(3) constitute the
complete set of equations that must be solved in order to obtain the finger shape.

For characterizing the instability quantitatively, most studies have focused on the
width of the finger w relative to the channel width W , λ = w/W as a function of
their velocity. It follows from the above that their width is determined by the capillary
number Ca = µU/σ, which represents the ratio of viscous forces µU/R and capillary
forces σ/R. The finger velocity U is related to the velocity v of the fluid far from the
finger by mass conservation, U = λv. The viscous forces tend to narrow the finger,
whereas the capillary forces tend to widen it. We thus anticipate that the relative width
of the viscous fingers decreases with increasing finger velocity. This is indeed what
is observed experimentally; however, for very large values of the capillary parameter,
λ does not go to zero but reaches a limiting value of about half the channel width.

The control parameter for the fingering problem is 1/B = 12Ca(W/b)2 with W/b
again the aspect ratio of the Hele-Shaw cell. When scaled on 1/B, measurements of
λ for different systems all fall on the same universal curve. In the ideal, Newtonian,
two-dimensional situation 1/B is consequently the only parameter that selects the
finger width.

In the absence of surface tension, Saffman & Taylor (1958) found a family of
analytical solutions of the shape of the interface in Cartesian coordinates x(y)
given by:

x =
W (1− λ)

2π
ln

[
1

2

(
1 + cos

2πy

λW

)]
. (4)

The form of the finger obtained from (4) for λ = 0.5 (where the surface tension
is least important) agrees well with the experimentally observed finger shapes.
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Figure 1. Schematic drawing of the experimental set-up.

However, (4) does not explain the finger selection, i.e. it does not relate λ to 1/B.
In order to account for that, the surface tension has to be taken into account. This
was done numerically by McLean & Saffman (1981) who determined the dependence
of the universal curve for λ on 1/B. Their results were found to agree well with
the experimental determinations. Only much later was the selection problem solved
analytically (Shraiman 1986; Hong & Langer 1986; Combescot et al. 1986).

3. Experimental
The rheology of the polymer solutions was studied on a Reologica Stress-Tech

(cone-plate geometry) rheometer equipped with a normal force transducer. We use a
large cone (55 mm) with a small angle (0.5◦) in order to detect small normal stress
differences at high shear rates.

The viscous fingering experiments are performed for the polymer solutions in a
rectangular Hele-Shaw cell consisting of two glass plates separated by a thin Mylar
spacer, fixing the plate spacing b which can be changed from b = 0.25 mm to b = 1 mm.
Three different channel widths are used: W = 2, 4 and 8 cm. We constructed a long
Hele-Shaw cell (> 1 m) for this study in order to verify that we are indeed in a steady
state and the finger does not change in time. This was the case for all the experiments
reported here. The cell is filled with the polymer solution, and compressed air is
used as the less viscous driving fluid. The design of the experimental cell is shown
figure 1. The fingers are captured by a CCD camera coupled to a VCR. This allows
for measurements of the width w as a function of the velocity U of the tip of the
finger.

Furthermore, we measure the pressure at the inlet and outlet of the cell either by
a pressure transducer or a water column manometer in order to obtain the applied
pressure gradient.

For the experiments on rigid polymers described below, we use solutions of
xanthane, a stiff rodlike polysaccharide with an average molecular weight of Mw =
3 × 106 g mol−1, obtained from Aldrich. Rheological measurements show that the
overlap concentration c∗ is 50 w.p.p.m. (parts per million per weight), so that
the measurements presented below are in the dilute and semi-dilute regime. The
surface tension σ for the air/xanthane solution is 72 ± 2 mN m−1 (Lindner, Bonn &
Meunier 2000b), independent of polymer concentration over the range of concen-
trations used in our experiments and thus very close to the surface tension of pure
water (72.3 mN m−1).

For the experiments on flexible polymers we use polyethylene oxide (PEO) grade
WSR301 from Union Carbide; its molecular weight Mw = 4× 106 is close to that of
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the xanthane. Rheological measurements show that the overlap concentration c∗ is
400 w.p.p.m., so that the measurements presented below are in the dilute and semi-
dilute regime. The surface tension σ for the air/PEO solution is 63±2 mN m−1 (Bonn
& Meunier 1997), and is again found to be independent of polymer concentration
over the range of concentrations used in our experiments. The slight lowering of the
surface tension with respect to that of pure water indicates that some adsorption
(either of the polymer or of some impurities) takes place at the air/solution interface.

4. Effect of shear-thinning: the rigid polymer xanthane
4.1. Rheology and Darcy’s law

To characterize the solutions of xanthane, the viscosity and the normal stress differ-
ence were determined previously for a range of shear rates from 10 < γ̇ < 1000 s−1,
corresponding to the range of shear rates typically encountered in the viscous fingering
experiments (Lindner et al. 2000b). It was concluded that, for low concentrations, the
viscosity depends only slightly on the shear rate and thus deviations from Newtonian
behaviour are small. With increasing polymer concentration, the viscosity decreases
more strongly with increasing shear rate and strong deviations from Newtonian
behaviour are found. Xanthane solutions are shear thinning, and it was found that
a satisfactory description of most of the data can be obtained using the Ostwald–
de Waele power law model (Bird, Armstrong & Hassager 1987) for the viscosity µ,
µ = k1γ̇

(n−1) (with 1 > n > 0). The viscosity shows a power law dependence on the
shear rate. The values for n and k1 for the polymer solutions used in the following
can be found in Lindner et al. (2000b). Note that the obtained power n is a measure
for the shear thinning character of the fluid; n = 1 corresponds to a Newtonian fluid,
and the solutions become more shear thinning as n decreases. For the whole con-
centration range studied here (0 < c < 2000 w.p.p.m.) no measurable normal stresses
were found in the range of shear rates studied (10 < γ̇ < 6000 s−1); the uncertainty
on the measurements is of the order of 10 Pa. Estimates for the shear rates present
in the system (given in more detail below) show that it is unlikely that much higher
shear rates than these are present. The dominant non-Newtonian character of the
solutions of xanthane in shear flow for the concentration and shear range under study
is therefore the shear thinning character of the viscosity.

In addition, Lindner et al. (2000b) studied Darcy’s law, equation (1), directly in the
Hele-Shaw cell. They compared the experimentally obtained relation between v = λU
and ∇p to the rheology data. The average shear rate in the Hele-Shaw cell can be
obtained as the average velocity gradient by supposing the flow profile remains para-
bolic, γ̇ = 3U/b to a first approximation. It was found that predictions of Darcy’s law
in which the viscosity is simply replaced by the shear-thinning viscosity remains
valid for low concentrations (50 w.p.p.m., 100 w.p.p.m.) corresponding to weak shear
thinning. For higher concentrations (500 w.p.p.m., 1000 w.p.p.m.) and thus strong shear
thinning, Darcy’s law has to be modified further, taking into account the modification
of the parabolic flow profile. If this is done, again, good agreement is obtained
between the rheology data and the measurements in the Hele-Shaw cell (Lindner
et al. 2000b).

4.2. Finger selection

4.2.1. Weak shear thinning: low polymer concentration

We previously measured (Lindner et al. 2000b) the finger width w as a function
of the finger tip velocity U for solutions of xanthane at different concentrations of
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50–1750 w.p.p.m. To be able to compare the experimental results with the theoretical
predictions of McLean & Saffman (1981) for Newtonian fluids, the curves for λ were
scaled on a modified control parameter 1/B. For this, the shear thinning character
of the fluids is taken into account by replacing µ by the shear dependent viscosity
µ(γ̇) (van Damme et al. 1988; Lindner et al. 2000b). We found that for low polymer
concentrations (weak shear thinning) the finger width as a function of 1/B falls on
the universal curve for Newtonian fluids. For increasing polymer concentration, the
results for the finger width start to deviate from the universal curve. For high polymer
concentration and large 1/B, the finger width is found to be smaller than the classical
limit. To distinguish between the two regimes, it is worth noting that the results for
λ start to deviate from the universal curve for Newtonian fluids for concentrations
similar to those where we also observed deviations from the modified Darcy’s law
(Lindner et al. 2000b).

4.2.2. Strong shear thinning: high polymer concentration

For higher polymer concentrations, we observed fingers that are significantly nar-
rower than the classical limit for Newtonian fluids (Bonn & Meunier 1997; Lindner
et al. 2000b). A snapshot of such a finger is shown in figure 2(a). Fingers of width less
than λ = 0.5 have also been observed in Newtonian fluids, when the finger is disturbed
by the presence of an anisotropy in the system. The anisotropy can, for example, be
caused by placing a bubble in front of the finger tip (Couder et al. 1986; Rabaud,
Couder & Gerard 1988), by engraving the middle of the glass plates of the Hele-Shaw
cell in the direction of the finger propagation (Rabaud et al. 1988), or by a thread
stretched along the cell (Zocchi et al. 1987; Rabaud et al. 1988). Such a perturbation
of the finger systematically destroys the classical limit of λ = 0.5 for high velocities,
independently of the exact nature of the perturbation. If the perturbation introduces
an anisotropy facilitating flow in the direction of the finger growth, we observe the
formation of fingers with a relative finger width λ < 0.5 that tend toward zero for
high velocities. Similar behaviour is also found in theoretical studies in which the
perturbation is incorporated in an anisotropic surface tension (Shaw 1980; Kessler &
Levine 1985). A similar effect might occur also at the origin of the finger narrowing
for the polymer solutions; the shear dependent viscosity can be understood as an
anisotropy of the system. Regions of high fluid velocity corresponding to a high shear
rate should have a small viscosity due to the shear-thinning character of the polymer
solution. This is essentially the case in front of the finger tip, as is confirmed by the
numerical simulations of Kondic et al. (1998) and Fast et al. (2001); this anisotropy
leads to a preferred growth direction in the direction of movement of the finger.

To obtain more information about the selection mechanism for strong shear thin-
ning, we vary the cell geometry from W = 2 cm to W = 8 cm and from b = 0.25 mm
to b = 1 mm. In figure 3, we depict the results for λ as a function of the velocity
for a 1000 w.p.p.m. solution and three different widths of the cell. It can be observed
that the relative finger width decreases with increasing channel width and does not
stabilize on a unique plateau value at high velocities for the different geometries. For
Newtonian fluids, variations of λ with the channel width are observed only for low
velocities. For high velocities, the relative finger width stabilizes on a plateau value of
λ = 0.5, independently of the channel width. The conclusion must therefore be that
the selection mechanism of the shear thinning fingers is entirely different from that
for Newtonian fluids.

Our results are in fact similar to observations made by Rabaud et al. (1988)
for Newtonian fluids, but with engraved glass plates of the Hele-Shaw cell. They
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(a)

(b)

Figure 2. Snapshots of a finger for (a) a solution of 50 w.p.p.m. of PEO, and (b) a solution of
1000 w.p.p.m. of xanthane at high velocity (4 cm s−1) for a channel with W = 4 cm and b = 0.25 mm.
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Figure 3. Results for λ as a function of the velocity for a 1000 w.p.p.m. xanthane solution and
three different widths of the cell. �, 2 cm; •, 4 cm; ©, 8 cm.

also found ‘anomalous’ viscous fingers with a finger width significantly smaller than
λ = 0.5 at high velocities. This observation is explained by the fact that engravings
represent a local perturbation at the finger tip. This disturbance removes the selection
of the discrete set of solutions (with λ = 0.5 at high velocities) found normally. The
continuum of solutions given by the analytical result of Saffman & Taylor without
surface tension, equation (4), then becomes possible; λ can take values smaller than
λ = 0.5 at high velocity. Rabaud et al. (1988) indeed show that the form of the narrow
fingers is well described by equation (4).
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Figure 4. Dimensionless radius of curvature as a function of the inverse square root of the capillary
number for ©, 500 and �, 1000 w.p.p.m. xanthane solutions for a channel with W = 4 cm and
b = 0.25 mm.

Rabaud et al. show that for a given value of capillary number, it is the dimensionless
radius of curvature at the tip ρ/b that is selected. As a direct consequence, for a
given velocity, the anomalous fingers obtained in cells of different aspect ratios have
different widths, as was also observed for the shear thinning fluid (figure 3). More
quantitatively, Rabaud et al. obtain ρ from the observed λ, by expanding the tip
radius from equation (4) for small λ to find:

ρ =
λ2W

π(1− λ) , (5)

a result that becomes exact as λ→ 0. Their experiments show that the dimensionless
radius of curvature ρ/b follows (Rabaud et al. 1988)

ρ

b
=

α√
12Ca

, (6)

where α is a proportionality constant. Equations (5) and (6) yield λ as a function of
Ca, and therefore solve the selection problem.

We find that a similar mechanism is also responsible for the selection of the viscous
fingers in a shear thinning fluid. We find that the finger shapes agree well with the
analytical prediction of Saffman & Taylor, equation (4), provided λ < 0.65, so that
again surface tension effects are small. Subsequently, we can use equation (5) to
calculate ρ from the experimental λ, obtaining ρ/b as a function of 1/

√
Ca from

the experimental determination of λ(U). The viscosity µ is, as before, substituted by
the shear dependent viscosity µ(γ̇). The results for 500 w.p.p.m. and 1000 w.p.p.m. are
shown in figure 4 for a channel with W = 4 cm and b = 0.25 mm. We observe a region
where the relation between ρ/b and 1/

√
Ca is linear, as for the anomalous fingers

(Rabaud et al. 1988). For high velocities (corresponding to low 1/
√
Ca), we observe a

saturation of ρ/b (also observed by Rabaud et al. for Newtonian fluids) that we will
discuss below.

For the linear part, we find a slope α = 2.5 for 500 w.p.p.m. and α = 1.8 for
1000 w.p.p.m. Note that the value of α depends on the concentration of the solutions
and thus the shear thinning character of the fluids. The relation between α and the
shear thinning character of the solutions can be quantified further with the help of the
power law model. The results for α as a function of the shear-thinning exponent n for
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Figure 5. Slope α of the plot of figure 3 as a function of the shear-thinning exponent n for
different xanthane solutions.
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Figure 6. Experimental results for the finger width for a concentration of 1000 w.p.p.m. xanthane
and different cell geometries. •, W = 4 cm, b = 0.66 mm; �, W = 4 cm, b = 0.25 mm; N, W = 8 cm,
b = 0.5 mm; ©, W = 8 cm, b = 0.25 mm. The curve λ(1/B) from equation (7) is shown as the drawn
line.

a concentration range of c = 250 w.p.p.m. (n = 0.73) to c = 2000 w.p.p.m. (n = 0.33)
are depicted in figure 5, from which we conclude that the relation between α and n is
linear, α = 4.29 n.

This again solves the selection problem as it is now possible to obtain the value of α
from the power of the shear thinning viscosity, obtained by rheological measurements.
To compare the obtained results with the classical results of McLean & Saffman, it
is useful to be able to represent λ as a function of 1/B. From equations (5) and (6),
it follows that (Rabaud et al. 1988):

λ =
πα
√
B

2

[(
1 +

4

πα
√
B

)1/2

− 1

]
. (7)

With this result, once α is known, we obtain λ(1/B). The experimental results be-
fore the saturation for a given concentration but different geometries, should all
fall on this curve. Figure 6 depicts the experimental results for a concentration of
1000 w.p.p.m. and different cell geometries are shown as well as the curve λ(1/B) from
equation (7); the experimental results for different geometries fall on one universal
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curve given by equation (7), even if the observed finger widths are not very small. We
therefore conclude that equation (7) provides a satisfactory description of the data
before the saturation occurs.

The only remaining problem is then the saturation observed for the radius of
curvature for low values of 1/

√
Ca; the experimental results λ as a function of

1/B deviate from the universal curve at a given value of 1/B, that depends on the
geometry. In addition, for certain aspect ratios of the Hele-Shaw cell, the saturation
even turns into an increase of the finger width with increasing 1/B.

Although we have no explanation for these observations, especially for the increase
of λ with 1/B, it is worth noting that for the anomalous fingers of Rabaud et al. a
saturation was also observed. For the latter, the saturation occurs typically when ρ
becomes of the order of b. The saturation is therefore explained by the breakdown
of the two-dimensional nature of the problem. However, for our shear thinning fluids
the saturation occurs at values of ρ/b significantly larger than one (figure 4) and
depends on the polymer concentration. This suggests that a non-Newtonian property
that depends both on the shear rate and concentration of polymers is at the origin
of the saturation.

These could, for example, be the stabilization of the shear thinning viscosity on
a plateau value for high shear rates or, alternatively, a residual influence of small
normal stress effects. The observation that the shear rate at which the saturation occurs
decreases with increasing concentration excludes the plateau value of the viscosity
as the cause of the saturation, as the stabilization occurs for higher shear rates
when the polymer concentration is increased. On the other hand, when increasing
the polymer concentration, normal stresses may increase in importance and may
also become more pronounced at lower shear rates; these could, in principle, be
at the origin of the observed saturation. However, this is in contradiction with the
observation that for the solutions of xanthane used here, there are no measurable
normal stresses for the shear rates found in the Hele-Shaw cell. We will show in
the next section that the normal stresses occur mainly in the thin wetting film left
between the glass plates and the finger where the shear rates may be significantly
higher than in the rest of the Hele-Shaw cell. The shear rate in the film can be
estimated as γ̇ ≈ U/t, with t the film thickness from equation (10) below. Taking
U = 10 cm s−1, µ = 2 mPa s, σ = 63 m Nm−1 and 0.5 mm for the plate spacing, we
find a largest shear rate of γ̇ ≈ 6900 s−1, not very different from the maximum shear
rate in the rheology experiments γ̇ ≈ 6000 s−1. Therefore, it is also unlikely that
residual normal stress effects are at the origin of the saturation. It is also worth
noting that, although they may become of importance for the highest speeds (see the
calculation of the Reynolds number below), inertial forces cannot be responsible for
the observed widening of the fingers as they lead to a narrowing; this is discussed
in detail below. Therefore, the observed saturation (and increase) remains to be
understood.

Finally, the last inconvenient point of the finger selection discussed above is that
it contains one adjustable parameter that has to be determined experimentally: the
proportionality constant between α and the shear-thinning exponent n. This means
that rheological data alone are not sufficient to predict the finger width. In order to do
better, it is possible to solve the (modified) equations (1)–(3) directly for a power-law
fluid. This was done by Corvera Poiré & Ben Amar (1998) and Ben Amar & Corvera
Poiré (1999) for weakly shear thinning fluids. As it is not clear at which shear-thinning
exponent their approximations break down, we can attempt to compare the results
for our ‘strongly’ shear-thinning fluid to their numerical calculations.
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Figure 7. Comparison between a direct numerical resolution of equations (1)–(3) for power-law
fluids and the experimental data for a ©, 500 w.p.p.m. and �, 1000 w.p.p.m. xanthane solutions.

In (Lindner et al. 2000b), we compared one data set (for one aspect ratio of the
Hele-Shaw cell) in the non-saturated regime to the direct numerical resolution of
the equations, and found a reasonable agreement. Figure 7 shows the new and more
extensive experimental results for solutions of xanthane of 500 w.p.p.m. (n = 0.6) and
1000 w.p.p.m. (n = 0.46) obtained for different cell geometries. For both concentrations
only the results for the non-saturated regime are shown. For the concentration of
1000 w.p.p.m., these results correspond to the data that fall on the universal curve
shown in figure 6; for the comparison made in figure 7, we no longer distinguish
different cells using different symbols in the figure. The data for the concentration of
500 w.p.p.m. are obtained in the same way. The experimental data are now compared
to the numerical results for the corresponding value of n; a good agreement is
obtained, although some deviations are observed for small speeds. These results differ
from those reported by Lindner et al. (2000b) as we focus mainly on the part of the
curve before the high-velocity plateau; we left out the comparison at high velocities,
since the uncertainty on the numerical values is somewhat larger here.

Furthermore, we can conclude that the numerical results obtained by Corvera Poiré
& Ben Amar (1998) and Ben Amar & Corvera Poiré (1999) are in good agreement
with the prediction of equation (7) when using the proportionality constant α obtained
from the experimental results for the radius of curvature at the finger tip.

5. The effect of normal stresses: the flexible polymer PEO
5.1. Rheology

We measure the non-Newtonian viscosity and the first normal stress difference in
the range 100 s−1 < γ̇ < 6000 s−1 using water as a reference. The measurements are
performed on a Reologica StressTech rheometer equipped with a normal force trans-
ducer. We use a large cone (55 mm) with a small cone angle (0.5◦) in order to measure
small normal stress differences at high shear rates (Lindner, Vermant & Bonn 2002).

The results for the viscosity and first normal stress difference N1 are shown in
figures 8 and 9. The normal stress effects are large, both compared to those for the
rigid polymers, and compared to the viscous stresses. The viscosity, on the other
hand, depends only slightly on the shear rate. This behaviour is best modelled by the
Oldroyd-B model (Bird et al. 1987), featuring a constant viscosity µ and a quadratic
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Figure 8. Viscosity versus shear rate for solutions of PEO, for concentrations of •,
c = 125 w.p.p.m.; H, 250 w.p.p.m.; �, 500 w.p.p.m.; N, 1000 w.p.p.m.
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Figure 9. First normal stress difference versus shear rate for solutions of PEO, for concentrations
of c = 125 w.p.p.m., 250 w.p.p.m., 500 w.p.p.m. and 1000 w.p.p.m. (symbols as in figure 8).

first normal stress difference, N1 = Ψ1γ̇
2, (Ψ1 is the so-called first normal stress

coefficient) where:

µ = µs +NkBTτ, (8)

and

Ψ1 = 2NkBTτ
2, (9)

where µs is the solvent viscosity, N is the number density of polymer molecules and
kBT the thermal energy. The only adjustable parameter of the model is the relaxation
time τ. The fits are shown in the figures and describe the data in a satisfactory way;
the values obtained for τ by fitting the rheological data are given in table 1. It is
evident from these measurements that the dominant non-Newtonian property of the
solutions of PEO are the elastic effects, notably the significant normal stresses. These
are due to the stretching of the flexible polymer molecules in the flow field. The same
stretching also entails an important resistance to stretching (elongational) motion, or
elongational viscosity, that can be orders of magnitude higher than the shear viscosity
(Bird et al. 1987; Bergeron et al. 2000).
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Concentration
(w.p.p.m.) τ (s)

Fit parameters Oldroyd-B fluid PEO (from N1) 1000 0.00385
500 0.00383
250 0.0027
125 0.0026

Fit parameters Oldroyd-B fluid PEO (from η) 1000 0.00349
500 0.00339
250 0.0024
125 0.00197

Table 1. Values of τ obtained by fitting the rheological data.
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Figure 10. Velocity as a function of the applied pressure gradient for a PEO solution of 250 w.p.p.m.,
together with a linear fit of the data as would follow from Darcy’s law with a constant viscosity.

5.2. Darcy’s law

As the flow near the tip of the viscous fingers is partly elongational, the question arises
whether the large elongational viscosity of the PEO solutions possibly intervenes in
the fingering instability. This large elongational viscosity gives the large resistance to
the stretching flow of these polymer solutions. The flow near the tip of the finger being
partly a stretching flow, we might wonder whether this influences the propagation
velocity of the finger for a given pressure gradient, which, in turn, could modify the
finger width selection.

We therefore study the validity of Darcy’s law directly in the fingering experiment
for the solutions of PEO. Figure 10 depicts the velocity v as a function of the applied
pressure gradient for a PEO solution of 250 w.p.p.m., together with a linear fit of the
data as would follow from Darcy’s law with a constant viscosity. Despite the fact that
there is some scatter in the data owing to the low viscosity of the sample, we conclude
that the relation between the velocity and the pressure gradient is linear. This is in
agreement with the observation that the shear viscosity of the solutions of PEO is
almost a constant. In addition, if we calculate the viscosity from the slope using the
Newtonian Darcy’s law, equation (1), we obtain µ = 1.76 ± 0.36 mPa s in agreement
with the rheological data for the shear viscosity; the fit using the Oldroyd-B model
gives µ = 1.43 mPa s. The study of Darcy’s law for this polymer thus demonstrates
that the fluid can be taken to have a constant viscosity. Therefore, for the solutions of
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Figure 11. Results for λ as a function of the velocity for two different concentrations of PEO.
©, •, 50 w.p.p.m.; �, �, 250 w.p.p.m. Filled symbols correspond to viscous fingers, open symbols
to finite bubbles in the Hele-Shaw cell.

the flexible polymer PEO, the velocity as a function of the applied pressure gradient
is described well by the Newtonian Darcy’s law, and we consequently exclude the
possibility of an important influence of the very large elongational viscosity on the
propagation velocity of the fingers.

5.3. Finger selection

Measurements of the finger width for the solutions of PEO have been reported
previously (Bonn et al. 1995; Bonn & Meunier 1997). As a representative sample
from these measurements, the relative finger width λ as a function of the finger
velocity U is depicted in figure 11 for two different concentrations: 50 w.p.p.m. and
250 w.p.p.m. Note that it is not possible to obtain data for higher velocities than
those shown in figure 11, as no stable fingers are observed for such velocities; tip
splitting instabilities are observed for higher speeds. Contrary to the observations
for the shear thinning fluid for which a narrowing of the fingers was observed, a
widening of the finger compared to the Newtonian case is found (see also snapshot
in figure 2b). This widening becomes more pronounced as the polymer concentration
increases. For a concentration of 50 w.p.p.m., λ decreases with increasing velocity and
stabilizes on a plateau with λ > 0.5 for high velocities. For 250 w.p.p.m., we observe
first a decrease, and then an increase followed by a stabilization on a plateau value
again with λ > 0.5, and also higher than the values observed for 50 w.p.p.m. However,
the selection mechanism for the finger width was not understood, in spite of several
efforts in this direction (Bonn et al. 1995; Bonn & Meunier 1997). In the following,
we explain the widening of the viscous fingers.

Bonn & Meunier (1997) studied the flow of finite bubbles in a capillary, measuring
the thin wetting film left between the moving bubble and the walls of the tube. In
the limit of small capillary number, for Newtonian fluids, the thickness t of the film
is (Bretherton 1961):

t

R
= 0.643(3Ca)2/3, (10)

where R is the radius of the tube. When polymers were added, they observed film
thicknesses much larger than those predicted by (10). The explanation for the increase
of the film thickness was that high normal stresses in the film exert an extra pressure
on the bubble which becomes more elongated. Bonn & Meunier also suggested that
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for the viscous fingers in the Hele-Shaw cell, a similar effect could lead to an extra
pressure within the wetting film between the advancing finger and the glass plates
of the cell. This extra pressure could cause a change in the finger width and could
thus be responsible for the observed finger widening in the PEO solutions. We will
examine this proposition here.

In order to do this, it is necessary to recall that in the bubble experiment, the
normal stresses responsible for the film thickening result from the high shear rate in
the film. The existence of such a high shear rate in the film left between the viscous
finger and the glass plates is less obvious as the rear of the finger does not move.
As a first experiment, we therefore study finite bubbles in the Hele-Shaw cell. We
used two different polymer concentrations: 50 w.p.p.m. and 250 w.p.p.m.; we again
measure the width of the bubble as a function of its velocity. In these experiments,
the length of the bubble was always several times higher than its width. The results
are compared to those for the fingers in figure 11, from which we can conclude that
the width of the bubbles is indistinguishable from that of the fingers. This shows that
either for the fingers, high normal stresses may also develop in the wetting film, or
the polymers act in the same way at the tip of the bubbles and the fingers, leading
to the observed widening. The stresses in the wetting film adapt themselves to what
happens at the tip. This observation allows us thus to calculate the shear rate that
occurs in the wetting film of the fingers in the same way as for the bubbles.

We subsequently performed interferometric measurements of the wetting film thick-
ness (Tabeling & Libchaber 1986). We find that Bretherton’s law remains valid to with-
in the experimental error (replacing the radius R by the plate spacing b in equation
(10)) for all concentrations that we tested (up to 1000 w.p.p.m.). The film thickness for
the solutions of PEO is very close to the thickness obtained for Newtonian fluids
(data not shown). This result is very different from the large increase of the film
thickness observed for air bubbles in a circular tube. This is logical, in fact, as for
the fingers it is much easier to deform in the direction of the finger width, as the
radius of curvature is much larger there, than in the direction perpendicular to the
glass plates. We could therefore anticipate a widening of the fingers rather than a
significant thickening of the film, exactly as is observed in the experiments. In order
to see whether an extra pressure on the finger because of the normal stresses can
quantitatively account for the observations, we first discuss the results for the relative
finger width as a function of the control parameter 1/B = 12Ca(W/b)2. New results
for b = 0.5 mm, W = 4 cm and 5, 50 and 500 w.p.p.m. PEO solutions, are shown in
figure 12, together with the universal curve for Newtonian fluids. It can be seen
that the results for the different concentrations do not coincide with the universal
curve of McLean & Saffman (1981). Note that we observe a destabilization of the
fingers at values of 1/B as low as 200. For Newtonian fingers it is known that the
destabilization of the fingers occurs at significantly higher values of 1/B (Park &
Homsy 1986). Observations of the destabilization at low values of 1/B for fingers
in solutions of PEO have been made before and were interpreted as being due to
normal stress effects (Vlad & Maher 1993).

We subsequently include the extra pressure that the normal stresses exert on the
finger in the control parameter 1/B. To do so, we calculate the normal stress difference
N1 that occurs in the thin wetting film using the Oldroyd-B model (equation (9)).
Furthermore, as in Bonn & Meunier (1997), we assume a no-slip boundary condition
at the air–polymer solution interface. Then, in the film, the shear rate γ̇ ≈ U/t where
t is the film thickness calculated from Bretherton’s law. We therefore suppose that
γ̇ = β(U/t) where β is a constant of order unity. The normal stress difference exerts
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Figure 12. Results for λ as a function of the control parameter for �, c = 5 w.p.p.m. •, 50 w.p.p.m.;
©, 500 w.p.p.m., of PEO for a channel width of W = 4 cm and b = 0.5 mm. The drawn line is the
McLean–Saffman result for Newtonian fluids.

an extra pressure on the finger that has to be added to the capillary pressure in the
direction of the plate spacing. The pressure jump at the interface then reads

∆p = σκ+
2σ

b
+N1(γ̇), (11)

where κ is the curvature in the direction of the channel width. Note that the radius of
curvature in the direction of the plate spacing is taken to be 1

2
b, as in Saffman & Taylor

(1958). This allows us to define an effective surface tension, which includes N1, in a
similar way to Tabeling & Libchaber (1986) for the Newtonian case. Neglecting the
(small) first term on the right-hand side, the effective surface tension σeff = σ+ 1

2
N1(γ̇)b

leads to a corrected control parameter:

1

Bcorr
= 12

µU

σ + 1
2
N1(γ̇)b

(
W

b

)2

. (12)

When plotting the relative width of the viscous fingers for c = 5, 50 and 500 w.p.p.m.
PEO as a function of this new control parameter (figure 13), we observe that the
data collapse onto a single universal curve. Equation (12) defines the ‘real’ control
parameter for our problem. As for the precise value of the proportionality constant
between γ̇ and U/t, we find that β = 2.8 gives the best rescaling of the data. This
means that U/t is indeed the correct order of magnitude for the shear rate, but that
it gives an estimate that is slightly too low. This could in part be due to the fact
that there are small deviations from the film thickness predicted by Bretherton’s law
(equation (10)), which was obtained by Bretherton (1961) as an expansion for small
velocities (small capillary numbers). For non-Newtonian fluids having normal stress
effects (Oldroyd-B fluids), smaller film thicknesses were indeed predicted theoretically
by Ro & Homsy (1995), as discussed below. In addition, even for the Newtonian case,
equation (10) gives an estimate for the maximum film thickness corresponding to the
lowest shear rate; therefore, a somewhat higher average shear rates is necessary to
rescale the data.

Moreover, the universal curve that is found is, in fact, in good agreement with the
classical results of McLean & Saffman (1981) for values of 1/Bcorr that are not too
high. For higher values, the results deviate from the universal curve. The data seem
to stabilize on a plateau value higher than the classical value λ = 0.5.
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Figure 13. Same data as in figure 12, but now plotted as a function of the corrected control
parameter that takes normal stress effects into account.

Two explanations are possible for this observation. First, at the highest speeds,
inertial effects may come into play. If we define the Reynolds number with the
plate spacing as the relevant length scale, we have Re ≈ ρUb/µ, (ρ ≈ 103 kg m−3

being the liquid density) which can become of order unity for the highest speeds
considered here. Gondret & Rabaud (1997) recently formulated an approximate way
to include inertial effects in Hele-Shaw flow, averaging over the small gap. Using this
approximation, Ben Amar & Bonn (2002) were able to estimate the effects of inertia
on the width of (Newtonian) viscous fingers. Relative to the McLean–Saffman result,
they find fingers that either have the same width, or are narrower. Therefore, inertial
effects cannot account for the observation that the fingers are wider than expected.
The second option to account for the widening is that the observed plateau is due to
the presence of impurities in the cell. It turns out to be very difficult to make the glass
plates perfectly wetting to pure water; in the experiments, a pinning of the interface
at wetting defects is often observed using pure water. For such anomalous fingers,
we observe a stabilization around λ ≈ 0.7 for the values of the control parameter
considered here. These values are similar to those observed for PEO at high speeds,
and thus could provide an alternative explanation. It should be noted that with PEO,
however, the pinning of the interfaces is observed less frequently, probably because the
polymer changes the wettability a little. For xanthane, the pinning is never observed
and the finger width stabilizes at λ ≈ 0.5 for high speeds in the limit of low polymer
concentration. The latter observation gives us some confidence that the deviation
from the McLean–Saffman result is likely to be an experimental effect due to wetting
defects on the glass plates.

In conclusion, the corrected control parameter that includes the normal stress
allows us to rescale the experimental data for different PEO concentrations. For low
1/Bcorr , the universal curve is in good agreement with the classical result of McLean
& Saffman. For higher values of 1/Bcorr , we find a small deviation from the classical
results. This deviation is likely to be due to an experimental effect, but cannot be
explained quantitatively for the moment.

Finally, the observed increase in finger width with increasing velocity that is
sometimes observed (figure 11) remains unaccounted for. Although it can, in principle,
be envisaged that the competition between capillary, viscous and elastic forces leads
to such behaviour, for the parameters used here, an increase of λ with the velocity is
never observed.
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Comparing with theory, Ro & Homsy (1995) analysed the thickness of the film in
the Saffman–Taylor problem for an Oldroyd-B fluid. We have shown above that the
solutions of PEO we use are described well by this model. Ro & Homsy predict a
slight decrease of the film thickness compared to Newtonian fluids for the elastic fluid,
not in contradiction with our findings. However, it should be noted that their results
are valid for both small capillary and Weissenberg numbers, We. The Weissenberg
number is a measure of the importance of the elastic effects of the fluid and can
be defined as the ratio of the relaxation time of the polymers and a characteristic
time of the flow, given by 1/γ̇. For a typical relaxation time τ = 3 ms (typical for
concentrations smaller than 500 w.p.p.m.) and a typical shear rate observed in the
viscous fingering experiment we obtain We ≈ 1, which can hardly be considered as
small. Wilson (1990), in another theoretical paper, considered the basic equations for
the stability of the interface, also employing the Oldroyd-B model, but did not come
up with explicit predictions for the finger width in steady state. As far as we know,
no other theory exists on this problem.

6. Summary and conclusions
We have considered the Saffman–Taylor or viscous fingering instability in two

different polymer solutions, each exhibiting in essence only a single non-Newtonian
flow property. Solutions of rigid polymers show a strong shear-thinning behaviour,
but have negligible elastic effects. Flexible polymer solutions, on the other hand,
show negligible shear thinning but strong elastic effects, notably normal stresses that
can easily exceed the viscous stresses and a large elongational viscosity. Investi-
gation of the fingering instability for these polymer solutions allows us to consider
the effect of the most common non-Newtonian effects on the fingering instability
separately.

For the shear-thinning polymer solutions, we have shown that the results for the
relative finger width as a function of the finger velocity separate into two different
regimes. For low polymer concentrations, the non-Newtonian effects are weak. They
can be taken into account solely by taking the shear-thinning viscosity into account
both in an effective Darcy’s law, and in the control parameter. If this is done, results
obtained for different concentrations, different dimensions of the Hele-Shaw cell all
scale onto the universal curve for Newtonian fluids.

For higher polymer concentrations, the shear-thinning effects become more import-
ant. This not only leads to a modification of Darcy’s law but also the fingers become
narrower than is possible for the Newtonian case (λ < 0.5) so that automatically there
is no hope of rescaling onto the Newtonian result. We show that it is the radius of
curvature at the tip that is selected. Once this is admitted, two roads to a quantitative
understanding of the instability are open. The first one is to relate the shear-thinning
behaviour phenomenologically to the dependence of the radius of curvature ρ on
the capillary number. Here, we find a linear relationship between the shear-thinning
exponent and the slope of ρ vs. 1/

√
Ca. This allows us to define a new universal

curve for a given shear-thinning fluid. Results for different cell dimensions are shown
to collapse onto this universal curve. The second possibility to quantitatively account
for the data is to solve the governing equations numerically. This also leads to a fair
agreement between theory and experiment.

For the elastic polymer solutions, under similar conditions, much wider fingers are
found than for Newtonian fluids, in contrast with the narrower fingers observed for
the shear-thinning polymer. A study of Darcy’s law allows for the conclusion that the
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influence of the high elongational viscosity of such polymer solutions typically does
not show up in the propagation velocity of the fingers. The other important elastic
effects are the large normal stresses such solutions exhibit. We show that these can be
taken into account in the pressure drop over the interface, and they can consequently
be incorporated in an effective surface tension. If this tension is incorporated in the
control parameter a satisfactory data collapse occurs. Moreover, the data almost
coincide with the universal curve for Newtonian fluids.

In conclusion, we have succeeded in understanding the relation between the rheolog-
ical properties of a given non-Newtonian fluid and the fingering instability occurring
in these fluids. This should be helpful in understanding what happens in more com-
plex fluids such as foams, clay pastes, slurries, polymer melts and gels encountered
in numerous applications as oil recovery, hydrology or injection moulding, for which
fingering instabilities may be relevant.

We are indebted to Yves Couder for helpful discussions. The Laboratoire de
Physique Statistique of the Ecole Normale Supérieure is UMR 8550 of the CNRS,
associated with the universities Paris 6 and Paris 7. A. L. has benefited from a
scholarship from the DAAD under program HSP III.
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Homsy, G. M. 1987 Viscous fingering in porous media. Ann. Rev. Fluid Mech. 19, 271–311.

Hong, D. C. & Langer, J. S. 1986 Analytic theory of the selection mechanism in the Saffman–Taylor
problem. Phys. Rev. Lett. 56, 2032–2035.

Kawaguchi, M., Shibata, A., Shimoto, K. & Kato, T. 1998 Effect of geometry and anisotropy of
a Hele-Shaw cell on viscous fingering of polymer solutions. Phys. Rev. E 58, 785–788.

Kessler, D. A. & Levine, H. 1985 Stability of finger patterns in Hele-Shaw cells. Phys. Rev. A 32,
1930–1933.

Kondic, L., Palffy-Muhoray, P. & Shelley, M. J. 1996 Models of non-Newtonian Hele-Shaw
flow. Phys. Rev. E 54, R4536–R4539.

Kondic, L., Shelley, M. J. & Palffy-Muhoray, P. 1998 Non-Newtonian Hele-Shaw flow and the
Saffman–Taylor instability. Phys. Rev. Lett. 80, 1433–1436.

Lemaire, E., Levitz, P., Daccord, G. & van Damme, H. 1991 From viscous fingering to viscoelastic
fracturing in colloidal fluids. Phys. Rev. Lett. 67, 2009–2012.

Lindner, A., Bonn, D. & Meunier, J. 2000b Viscous fingering in a shear thinning fluid. Phys.
Fluids 12, 256–261.

Lindner, A., Coussot, P. & Bonn, D. 2000a Viscous fingering in a yield stress fluid. Phys. Rev.
Lett. 85, 314–317.

Lindner, A., Vermant, J. & Bonn, D. 2002 How to obtain the elongational viscosity of dilute
polymer solutions? Physica A (in press).

McCloud, K. V. & Maher, J. V. 1995 Experimental perturbations to Saffman–Taylor flow. Phys.
Rep. 260, 139–185.

McLean, J. W. & Saffman, P. G. 1981 The effect of surface tension on the shape of fingers in a
Hele-Shaw cell. J. Fluid Mech. 102, 455–469.

Park, S. S. & Durian, D. J. 1994 Viscous and elastic fingering instabilities in foam. Phys. Rev. Lett.
72, 3347–3350.

Park, C.-W. & Homsy, G. M. 1986 The instability of long fingers in Hele-Shaw flows. Phys. Fluids
28, 1583–1585.

Park, C.-W. & Homsy, G. M. 1984 Two-phase displacement in Hele-Shaw cells: theory. J. Fluid
Mech. 139, 291–308.

Rabaud, M., Couder, Y. & Gerard, N. 1988 Dynamics and stability of anomalous Saffman–Taylor
fingers. Phys. Rev. A 37, 935–947.

Reinelt, D. A. & Saffman, P. G. 1985 The penetration of a finger into a viscous fluid in a channel
and tube. SIAM 6, 542–561.
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